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Introduction

@ In our treatment of linear and multiple regression algebra, we have, so
far, relied on the most traditional algebraic approach.

@ This began, in the case of simple bivariate linear regression, by
presenting the data for n observations on two variables X and Y as
points plotted in a plane.

@ This approach is of course quite useful, but another quite different
approach has also proven extremely useful.

@ In the sample, this approach involves presenting variables as vectors
plotted in the n-dimensional “data space.”
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Introduction

A Variable as a Vector

@ For example, suppose n = 3 and the variable y; has the values
y1 = (4,—1,3). The variable y» has values y; = (1, 3,5).

@ We can plot them in 3-dimensional space as shown on the next slide,
taken from Johnson and Wichern (2002).
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A Variable as a Vector
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A Variable as a Vector

A Vectorspace and its Basis

@ Recall the operations of scalar multiplication and vector addition as
already defined.

@ Recall also that a set of vectors is linearly independent if and only if
no vector is a linear combination of the others.

@ Now consider a set of k linearly independent vectors x1, X, ... Xg.
They are said to be basis vectors that span a k-dimensional
vectorspace.

@ The vectorspace itself is defined as the set of all linear combinations
of its basis vectors.
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A Variable as a Vector

Length of a Vector

@ As an extension of the Pythagorean Theorem, the Euclidean length of
a vector, denoted ||x||, is the square root of the sum of squares of its
elements, i.e.,

[Ix[] = Vx'x (1)
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A Variable as a Vector

Angle Between Two Vectors

@ The cosine of the angle 6 between two vectors x and y satisfies the
equation

_ Xy
cos(Q)gy)—\/)H\/yTy (2)

@ Conversely, the scalar product of two vectors can be computed as

x'y = [|x[|[lyl| cos(fi.y) (3)
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A Variable as a Vector

Relationship between Correlation and Angle

@ Equation 2 on the preceding slide shows some intimate connections
between statistics and geometry.

@ Suppose that both x and y are in deviation score form. Since the
variance of X is then x'x/(n — 1) and the covariance between x and y

is x'y/(n — 1), the following facts immediately follow:

@ The lengths of a group of deviation score vectors in n — 1 dimensional
space are directly proportional to their standard deviations.

@ The correlation between any two deviation score vectors in n — 1
dimensional space is equal to the cosine of the angle between them.
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Projection and Least Squares Estimation

Properties of Projectors

@ Projection is a key concept in geometry.

@ The projection or shadow of a vector y on another vector x is defined

as ,
XX
Ey = Pyy (4)
@ As we proved in Homework 2, for a vector x, the orthogonal projector
P, = x(xx"1)x’ and its complementary projector Q = I — Px have a
number of key properties, most of which trace back to the following:

Py =P, = P2
Qx:Qx/:QE
PxQx:0

Pyx=x, Qux =20
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Projection and Least Squares Estimation

Properties of Projectors

@ The key point of the homework assignment is that Py and Q4 can be
used to decompose a vector y into two component vectors that are
orthogonal to each other, with one component collinear with x and

the other orthogonal to it.

@ Specifically, for any y, define

y=Pxy, e=Qyy

@ Clearly y is collinear with x, since

P,y = x(x'x)flx’y =xb
with ,
,_ Xy
x/x
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Projection and Least Squares Estimation

Properties of Projectors

@ It also follows that

y=9y+e (8)
since
y+e = Pyy+Quy
= Pyy+ (I - ny)
= (Px+1-Pyy
= ly=y (9)
and that
ey=0 (10)
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Projection and Least Squares Estimation

Column Space Projectors

@ Now consider an X of full column rank with more than one column.
Similar results to the preceding ones can be established, as follows:

o We define the column space of X, Sp(X), as the set of all linear
combinations of the columns of X, that is, a vectorspace with the
columns of X as its basis.

@ The column space orthogonal projector Px and its complementary
projector Qx are defined essentially the same as before, i.e.

Px = X(X'X) "X/

and
Qx =1-Px
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Projection and Least Squares Estimation

Column Space Projectors

@ Now for any matrix Y, the columns of
Y = PxY
are in the column space of X, since

v = x{(xx)"xv} (11)
= XB (12)
Moreover, as before, we can define E = Q4Y and establish results
analogous to those in Equations 8-10.

@ Just as we say that Py projects any vector into Sp(X), Qx projects
any vector into Sp(X)+, the orthogonal complement to Sp(X).

@ These results are central in linear regression.
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Demos in 3D

@ Let's digress and examine the geometry of statistics with an active
demonstration in n = 3 dimensions.

o Although being stuck in 3 dimensions constrains our ability to
visualize, many of the concepts become clearer.

@ Create a working directory. Download the files GeometrySupport.R
and GeometryDemos.R to it from the website. startup R, and make
sure that the rgl and geometry packages are installed.

@ If they are not, please download them and install them.

@ Then, open the file GeometryDemos.R in RStudio, and set the
working directory to where this file is located.
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The Determinant as Generalized Variance

@ In our 3D demo, we saw how two vectors can be thought of as
defining a parallelogram.

@ We have also pointed out that the length of a vector of deviation
scores is equal to v/n — 1 times its standard deviation, so that the
length of a deviation score vector is directly proportional to the
standard deviation of the variable it represents.

@ It turns out that, just as the square root of the variance of a single
variable is proportional to its length, the square root of the
determinant of the covariance matrix of a pair of variables is directly
proportional to the area of the parallelogram they “carve out” in
deviation score space.

@ Here is a picture from Johnson and Wichern.
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The Determinant as Generalized Variance
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The Determinant as Generalized Variance

@ If Sis a 2 x 2 matrix, it is well known that

2
IS| = s1152 — Sp1512 = S11502 — S

@ But since
S12 = r2+/S11522

we have
S| = susn(l - )
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The Determinant as Generalized Variance

@ But since the area of the parallelogram is Ly, x Height, and (recalling
that sin? 0 + cos? § = 1)

Height = L4, sinf = Lg\/1—cos?6 = Lg\/1—1r?

we have
Area = Ly, Ly /1 —r? = (n—1)y/s1150(1 — r?)

o Consequently,
Area®* = (n —1)?|S]

and
Area = (n— 1)|S\1/2
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The Determinant as Generalized Variance

@ More generally, as proven by T.W. Anderson in his classic textbook
on multivariate analysis, with p variables the relationship is

Volume? = (n — 1)P|S|

@ So |S|1/2 is the multivariate analog of the standard deviation, and the
determinant is a multivariate analog of variance.
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